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The intrusion of a fixed volume of fluid which is released from rest and then propagates
horizontally at the neutral buoyancy level in a vertically stratified ambient fluid is
investigated. The density change is linear, in a restricted layer or over the full depth of
the container, and locks of both rectangular and cylindrical shapes are considered. A
closed one-layer shallow-water inviscid formulation is used to obtain solutions of the
initial-value problem. Similarity solutions for the large-time developed motion and an
approximate box model are also presented. The results are corroborated by numerical
solutions of the full two-dimensional Navier–Stokes equations and comparisons with
previously published experiments. It is shown that the model is a versatile predictive
tool which clarifies essential features of the flow field. Accurate insights are provided
concerning the governing dimensionless parameters and the major features of the
motion. In particular, the theory predicts and explains: (a) the fact that the initial
propagation is with constant speed for intrusions released from a rectangular lock;
(b) the effect of the shape of the lock on the motion; (c) the spread with time at some
power in the developed stage; and (d) the sub-critical (compared to the mode 2 linear
waves) speed in a full-depth stratified container configuration. The main deficiency
of the shallow-water model is that internal gravity waves are not incorporated, but
some insight into this effect is provided by the comparisons with the Navier–Stokes
simulations and experiments.

1. Introduction
We consider the mainly horizontal motion which develops when a given volume of

fluid of constant density is released into a vertically stratified ambient at the level of
neutral buoyancy. The typical configuration is sketched in figure 1. We assume that the
density of the ambient fluid varies linearly over a layer of finite thickness or over the
full depth of the container, and that the Reynolds number, Re, of the flow is large.
The intrusion under consideration is a special case of flows called gravity currents,
and is a well-known phenomenon in natural and industrial systems (Simpson 1997).
Previous investigations were concerned with both experimental observation (mainly
with salt-water systems) and theoretical interpretations (Wu 1969; Maxworthy 1980,
1983; Faust & Plate 1984; Amen & Maxworthy 1980; de Rooij 1999; Dugan, Warn-
Varnas & Piacsek 1976; Manins 1976; Kao 1976). However, important gaps remain
in the theoretical understanding and formulation. In particular, no reliable predictive
model based on governing equations is available, and there is even some confusion
about the scaling of the variables. Wu (1969) suggested a curve-fit description for the
nose position xN vs. t (time), based on a very restricted set of data. Manins (1976)
and Kao (1976) developed box models under the assumption that the shape of the
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Figure 1. Schematic description of the system: (a) the geometry after release from a rectan-
gular lock, (b) density profile in the ambient. In dimensionless form, the horizontal lengths are
scaled with x0 and the vertical lengths with h0. The subscripts denote: N – nose (or front);
a – ambient; b – bottom; c – current (intrusion); o – open surface.

intruding fluid is an ellipse or a rectangle; both models use adjustable parameters
based on some ad-hoc matching. Maxworthy (1980, 1983) show that when the thickness
2l of the density transition layer is small compared to the thickness of the intrusion,
2hN , the solitary-wave description of Benjamin (1967) predicts well the velocity of
propagation. This wave problem has a sound theoretical background (for very deep
ambients H/hN → ∞), but is not relevant to the initial stage of propagation of the
intruding fluid and, moreover, it requires external knowledge of the amplitude of the
wave (i.e. hN ). Consequently, this approach cannot be used as a predictive model for
the initial stages of the lock-release and related problems.

There is agreement between the previous investigators that the velocity of propaga-
tion of the front in a full-depth linear stratification is given by FNhN , where
hN is the (half) thickness of the intrusion, N the buoyancy frequency, and F a
‘Froude number’. But these studies present various and inconsistent suggestions for
the value and functional behaviour of F, and no systematic way of predicting hN .
It is interesting to note that there is ample experimental evidence that an intrusion
released from a rectangular lock in various circumstances propagates for a quite long
time interval with constant speed (e.g. Faust & Plate 1984; de Rooij 1999), but there
is no theory to predict, or explain, such a behaviour. Similarly, there are experimental
indications that spread with t (time) at some power (close to 0.5) occurs at a later
stage of propagation, but, again, the theoretical details of this behaviour are obscure.
A review of the available body of knowledge led to the conclusion stated by Faust &
Plate (1984): ‘intrusions into a linearly stratified environment behave very differently
from theoretical calculations’. The need to close this gap provided the motivation of
the work reported in this paper.

The present work introduces a new analysis, based on the shallow-water (SW)
equations of motion and is backed by numerical solutions of the Navier–Stokes (NS)
problem. The SW model leads to a hyperbolic system for the velocity and thickness
of the intrusion as functions of t and x, subject to realistic initial conditions, and uses
no adjustable constants. This model predicts some important features of the motion,
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in a manner consistent with the available observations, such as: (a) propagation
with constant velocity in the initial stage for rectangular lock configuration); (b) the
dependence of the velocity on the thickness of the density-transition layer, 2l; (c) the
differences between the flows generated by rectangular and cylindrical locks; (d) the
‘sub-critical’ property of the velocity of propagation; and (e) the propagation with
t1/2 at large times. Comparisons with experiments and NS results are performed and
discussed for two configurations: (i) full-depth rectangular lock (or lock exchange) in
a stratified tank where the density variation occurs in a layer of thickness 2l which
is only a portion of the full depth 2H ; (ii) fully linearly stratified tank, with various
height ratios of ambient to lock, for both rectangular and cylindrical locks.

The analytical model used here is an extension of the one-layer shallow-water
formulation developed by Ungarish & Huppert (2002) for the investigation of gravity
currents which propagate at the bottom of a linearly stratified ambient. The theoretical
results were in good agreement with the experiments of Maxworthy et al. (2002) and
with numerical simulations over a wide range of parameters, which gives confidence in
the physical acceptability of the underlying assumptions. Indeed, a major simplifica-
tion is the assumption that the ambient can be considered quiescent for some signifi-
cant initial period of time. The neglect of the internal waves in the SW formulation
was based on the conjecture that for analytical progress it is feasible, perhaps even
necessary, to decouple the current and the waves. Useful insights for this approach are
provided by the closely related problem of the stratified flow over a fixed obstacle, a
topic covered thoroughly in Baines (1995). In analogy with that problem, the gravity
current (or intrusion) is a time-dependent deformable ‘obstacle’, whose shape interacts
with the waves it produces in the ambient, and hence the analytical study of the full
time-dependent flow field coupled with a time-dependent boundary condition turns
out to be a formidable task. The idea was to circumvent the difficulty by attempting
the following decoupling: first, solve for the propagation of the gravity current
(or intrusion) under the assumption of an unperturbed ambient; next, consider the
perturbations produced in an impulsively started flow over an obstacle of prescribed
height h(x, t) above the plane z =0. The solution of the first problem for bottom
gravity currents, Ungarish & Huppert (2002, 2004), demonstrated that the decoupling
provides good results for a period of time, until the waves are able to affect the
propagation. The analysis of Baines (1995) indicates that the typical wavelength in
the perturbed ambient is 2πuN/N. The most problematic cases are of sub-critical
propagation (with respect to the leading-mode linear wave in the corresponding
ambient, see below), but the experimental and numerical results indicate that in any
case the first significant interaction between the waves and the nose of the current
occurs at some advanced stage of motion (roughly, after a propagation of at least
two wavelengths). Until then, the SW predictions are in good agreement with the
measurements. We shall show that the intrusions considered in this paper display a
similar behaviour, and that the position where the interaction with the waves becomes
important can be estimated.

The structure of the paper is as follows. In § 2 the shallow-water equations of
motion and the appropriate boundary conditions are developed and discussed. We
apply the SW theory and perform comparisons with available experiments and our
Navier–Stokes numerical results for the rectangular lock configuration in § 3. The
experiments of Faust & Plate are considered first (§ 3.1), and those of Amen &
Maxworthy and de Rooij are discussed next (§ 3.2). The cylindrical-lock system is
solved and compared with Wu’s results in § 4. Finally, in § 5 we present some con-
cluding remarks. In Appendices A–C we present some details of similarity solutions
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and box-model approximations, the Navier–Stokes simulator and the processing of
the Amen & Maxworthy experimental data.

2. Formulation and shallow-water (SW) approximation
The configuration is sketched in figure 1. We use an {x, y, z} Cartesian coordinate

system with corresponding {u, v, w} velocity components. Gravity acts in the −z-
direction. We assume that the sidewalls of the container are vertical (x, z)-planes
and the gap between them is large (as compared with the thickness of the intrusion,
h0) and hence the inviscid flow does not depend on the coordinate y, and v ≡ 0.
Symmetry of the initial configuration with respect of the horizontal plane z = 0 is
assumed, as follows. The ambient fluid is in the domain −H � z � H , and is stably
stratified; the density of the ambient at z = 0 is the mean value over the depth, and
the density decrease occurs (linearly) either in a part-depth layer −l � z � l, or over
the full depth (i.e. l = H ), from ρb to ρo. The initial position of the intrusive current
is in the lock 0 � x � x0, −h0 � z � h0 (assumed rectangular first). The density of the
intruding current is equal to that of the ambient at the symmetry plane z = 0. In this
respect, the fluid of the intrusion can be regarded as the result of mixing the ambient
in the lock, and is also referred to as the ‘mixed fluid’. This can be expressed as

ρc = ρa(z = 0) = 1
2
(ρo + ρb) (2.1)

where the subscript a denotes the ambient and c, b, o refer to the current (or intrusion,
or mixed), bottom and open surface. It is convenient to use ρo as the reference density.

We introduce the reduced gravity,

g′ = εg, (2.2)

where g is the gravitational acceleration and

ε =
ρc − ρo

ρo

, (2.3)

is the reduced density difference.
The density in the intruding current and in the ambient can be expressed as

ρc = ρo(1 + ε), ρa = ρo[1 + εσ (z)], (2.4)

where σ (z) represents the form (shape) of stratification, a continuous and typically
decreasing (allowing for some piecewise-constant regions) function of z. We consider
the linear stratification in a layer ±l about the midplane,

σ (z) =




0 (z � l)
1 − z/l (−l � z � l)
2 (z � −l)

(2.5)

where 0 < l � H . The limits l = H and l =0 represent the full-depth stratification and
the two-layer ambient cases, respectively. Extensions of the present analysis to more
general forms of σ (z) are possible, but the present linear form provides leading-
order insight and allows comparisons with available experiments within the simplest
mathematical model. The buoyancy frequency is constant and given by (in the density
transition layer)

N =

(
g′

l

)1/2

(|z| � l). (2.6)
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The following shallow-water approximations are concerned with the inviscid and
Boussinesq (ε � 1) limits. In this case it is justified to claim that, since the initial
conditions are symmetric about z = 0 (as specified above), the resulting time-dependent
flow field will also be symmetric about z =0. It is therefore sufficient to consider the
flow in the domain z � 0. (The shape of the density interface and the velocity field in
the domain z � 0 are expected to be mirror images.)

We argue that, under the inviscid and Boussinesq assumptions, the z � 0 portion of
the intrusion is bound to behave like a gravity current that propagates at the bottom
of a stratified tank. This yields a useful connection between the present problem and
the recent studies on gravity currents of Maxworthy et al. (2002) and Ungarish &
Huppert (2002), in particular for the case when the density of the current matches
that of the ambient at the bottom (i.e. the parameter called R in Maxworthy et al.
2002, and the parameter called S in Ungarish & Huppert 2002 are equal to 1; some
care is required in the comparison with these previous formulations, because the
top-to-bottom density variation here is larger by a factor 2 compared to the bottom
current problems). Compared to the SW formulation of Ungarish & Huppert (2002),
not only is the position of the top and bottom boundary changed here, but we
consider very different configurations with (a) a part-depth density transition layer,
and (b) cylindrical lock release.

Following these studies, we use a one-layer approximation which is expected to
capture many of the important features of the flow, although it discards the internal
waves in the ambient, and is the simplest SW model. In the ambient fluid domain
we assume that u = v = w = 0 and hence the fluid is in purely hydrostatic balance
and maintains the initial density ρa(z) given by (2.4). The motion is assumed to take
place in the intruding layer of fluid only, 0 � x � xN (t) and 0 � z � h(x, t), where the
density is ρc. The subscript N denotes the nose (front) of the intrusion. We argue that
the predominant vertical momentum balance in the intruding fluid is hydrostatic and
that viscous effects in the horizontal momentum balance are negligibly small. Hence
the motion is governed by the balance between pressure and inertia forces in this
horizontal direction. The perturbation of the upper free surface introduced by the
flow can be neglected when ε � 1, as assumed here.

A relationship between the pressure fields and the height h(x, t) can be obtained.
In the motionless ambient fluid, which is open to the atmosphere, the pressure does
not depend on x, and the hydrostatic balances ∂pi/∂z = −ρig, where i = a or c, and
use of (2.4) yield

pa(z, t) = −ρo

[
z + ε

∫ z

0

σ (z′) dz′
]

g + C, (2.7)

pc(x, z, t) = −ρo(1 + ε)gz + f (x, t), (2.8)

where the constant C reflects the constant pressure at the top of the ambient at z = H .
Pressure continuity between the ambient and the intrusion on the interface z = h(x, t)
determines the function f (x, t) of (2.8). We obtain

pc(x, z, t) = −ρo(1 + ε)gz + ρog
′
[
h(x, t) −

∫ h(x,t)

0

σ (z) dz

]
+ C, (2.9)

and consequently

∂pc

∂x
= ρog

′ ∂h

∂x
[1 − σ (h)]. (2.10)
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We note in passing that (2.7)–(2.10), although developed for z > 0, are also valid in
the z < 0 domain. Pressure continuity at z = −h(x, t) and z = h(x, t) is equivalent in
view of the property 1 − σ (h) = σ (−h) − 1, see (2.5).

The fact that ∂pc/∂x is not a function of z facilitates the subsequent derivation of
the SW equations.

2.1. Governing SW equations and boundary conditions

It is convenient to scale the dimensional variables (denoted here by asterisks) as
follows:

{x∗, z∗, h∗, l∗, H ∗, t∗, u∗, p∗} = {x0x, h0z, h0h, h0l, h0H, T t, Uu, ρoU
2p}, (2.11)

where

T =
x0

U
, U =

[
ρc − ρa(z = 1)

ρo

h0g

]1/2

= (h0g
′)1/2 1

A =

{
(h0g

′)1/2 (l � 1)

Nh0 (l > 1)
(2.12)

and

A = [1 − σ (1)]−1/2 =

{
1 (l � 1)√

l (l > 1)
(2.13)

(to avoid possible confusion, we specify that ρa and σ in (2.12)–(2.13) are calculated
at the dimensionless z = 1).

Here, again, x0 and h0 are the initial length and half-thickness of the intrusion, U is
the typical inertial velocity of propagation of the nose and T is a typical time period
for longitudinal propagation over a typical distance x0. The reference velocity accounts
for the fact that the effective driving force is provided by the density difference over
the vertical dimension of the intrusion. Consequently, the coefficient A is needed for
achieving a unified formulation to the problems of thin (l < 1) and thick (l > 1) density
transition layers (as compared with the thickness of the intrusion). This is relevant to
the configurations considered in this paper following available experimental results.
The details will become evident during the discussion of the solutions of these cases.

We emphasize that hereafter the variables x, z, u, t, h, H, l, p are in dimensionless
form unless stated otherwise. The geometry under consideration imposes H � 1.

The z-average of the horizontal momentum equation, on account of (2.10), and in
conjunction with volume continuity, produces a system of equations for h(x, t) and for
the averaged longitudinal velocity u(x, t). (Again, viscous terms are neglected under
the assumption that the typical Reynolds number, say Re= Uh0/ν, is very large.) In
characteristic form the simplified continuity and momentum equations are[

ht

ut

]
+

[
u h

A2[1 − σ (h)] u

] [
hx

ux

]
=

[
0
0

]
. (2.14)

For the stratification assumed in this study the eigenvalues of the matrix of co-
efficients are real and the set of eigenvectors is full, and hence the system (2.14) is
hyperbolic. The characteristics propagate with the velocities

c± = u ± A[h(1 − σ (h))]1/2, (2.15)

and the relationships on dx/dt = c±, are

A
[
1 − σ (h)

h

]1/2

dh ± du = 0. (2.16)

The initial conditions for the intrusion at t = 0 are: zero velocity, unit length and
prescribed h(x) (rectangular or cylindrical lock). Boundary conditions at x = 0, xN (t)
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are prescribed as follows: u =0 at the backwall x = 0, and an additional condition
for the velocity u is needed at the nose x = xN (t) (the values of h at the boundaries
follow from (2.15)–(2.16)).

Ungarish & Huppert (2002) argued that, for a bottom gravity current, the velocity
of the nose is proportional to the square-root of the pressure head (per unit mass)
and, moreover, that the factor of proportionality, defined as the Froude number, Fr,
is provided by the same correlation as in the homogeneous gravity current. These
arguments are supported by the good agreement between the calculated uN and the
experimental values of Maxworthy et al. (2002), and it makes sense to extend them to
the present problem, pending the subsequent verification of the results by experiments.

The appropriate pressure head is given by pc − pa at z = 0 and x = xN , see (2.7) and
(2.9), scaled with g′h0/A2, and the resulting nose velocity can be expressed as

uN = Fr(hN )h1/2
N [1 − Λ(hN )]1/2A, (2.17)

where

Λ(hN ) =
1

hN

∫ hN

0

σ (z) dz. (2.18)

The term in the square brackets of (2.17) is typically smaller than 1, and expresses
the explicit slow-down of the head due to the stratification effects.

To close the formulation, it is necessary to specify the coefficient called the Froude
number, Fr. The theoretical formula developed by Benjamin (1968) for homogeneous
fluids in idealized situations indicated that this is an increasing function of H/hN

whose maximum is
√

2. The experimental evidence for practical gravity currents
confirmed the qualitative behaviour, but suggested some quantitative corrections to
account for viscosity and mixing effects. As a semi-empirical compromise, Huppert &
Simpson (1980) derived a simple well-known curve-fit-type correlation, which we shall
also use here:

Fr =

{
0.5H 1/3h

−1/3
N (0.075 � hN/H � 1)

1.19 (0 � hN/H � 0.075, deep intrusion).
(2.19)

This formula contains an empirical adjustment, but we emphasize that this is an accep-
ted ‘off-the-shelf’ result for gravity currents in general circumstances (e.g. Huppert &
Simpson 1980; Bonnecaze, Huppert & Lister 1993; Hallworth, Huppert & Ungarish
2001), not something tailored for the present problem.

No rigorous theoretical derivation of Fr for a stratified ambient configuration is
available. Here Fr represents the hindering effect of the ambient fluid on the buoyancy-
driven propagation of the nose. We can argue that this effect is dominated by the
momentum transport of the displaced fluids, and hence, under the Boussinesq approxi-
mation, the stratification of the ambient is expected to have little influence on the
dependence of Fr on hN/H . This justifies the use of a homogeneous-ambient correla-
tion in the present case. This conjecture is supported by the the work of Ungarish &
Huppert (2002) which considered the velocities of propagation of a bottom gravity
current in a linearly stratified tank. The SW velocities, calculated with the Fr closure
(2.19), were in very good agreement with experimental measurements over the full
range of the tested parameters. We shall show that this conjecture is also consistent
with the configurations discussed in the present work. Moreover, we stress that the
subsequent analysis is not affected by the exact form of the closure correlation for
Fr(hN/H ). Consequently: (a) except for some minor numerical details, the conclusions
concerning the main features of the propagation remain valid for a more general



294 M. Ungarish

correlation; and (b) when an improved theoretical Fr is available, its incorporation in
the present theory will be a straightforward task.

It is convenient to use the term ‘deep’ to refer to the case where the ratio hN/H

is so small that Fr is practically a constant. For the correlation (2.19) this ratio
is simply 0.075 = 1/13.3. An intrusion may be deep from the start, or become so
eventually as a result of its spreading during the propagation. The clear-cut definition
of the constant-Fr domains, and the simple function in the varying-Fr domain are
advantages of (2.19).

An inspection of the closed formulation shows that the form of the stratification,
i.e. σ (z), enters via three effects: (i) the scaling coefficient A; (ii) the pressure gradient
in the momentum equation (the coefficient of hx in (2.14)) and (iii) the nose velocity
driving force (the square brackets term in (2.17)). The second effect also affects the
propagation of the characteristics. The case of an interfacial intrusion into a two-layer
ambient is recovered for l =0, but this case is outside the scope of our investigation
(see de Rooij, Linden & Dalziel 1999 where other references are given).

2.2. Discussion

The formal assessment of the inviscid SW models, in particular the one-layer approxi-
mation, poses a serious challenge even in the classical homogeneous-ambient case.
Rigorously, this is an asymptotic theory for a strictly two-dimensional stable flow
field in the limits ε → 0, h0/x0 → 0, Re → ∞ and H → ∞. In these (sometimes singular)
limits, ambiguities concerning the boundary conditions may appear. For obtaining
meaningful solutions some rather ad-hoc closure conditions are used (for example, Fr
correlations developed for steady flows are applied to time-dependent fields). There
are no stringent theoretical estimates of the errors expected when this theory is applied
to real fluids and containers. Consequently, the practical use of this theory is instead
based on order-of-magnitude arguments and a confidence-building interaction of
comparisons between predictions and observations. In experiments, some deviations
from the theoretical assumptions are imposed by various limitations of the equipment
(e.g. ε > 0.01, h0/x0 > 0.2, and H is rarely larger than 4) and unavoidable side-effects
(e.g. the gate-removal delay, the finite thickness of the shear-mixing zone at the
interface between the fluids). Numerical simulations are subject to similar practical
restrictions. Consequently, an agreement within several percent between the SW theory
and the measurements (or Navier–Stokes results) is the best that can be expected.

In this spirit, we suggest the following main justifications of the present one-layer
model. We employ the analogies provided by the homogeneous counterpart and
hindsight provided by the solutions discussed below. The return flow in the ambient
introduces a relative error O[(hN/H )2] to the one-layer simplified pressure term,
and hence, since typically hN ≈ 0.5, this perturbation may be small even for non-
large H . Moreover, the two-layer model (in the homogeneous case) indicates that
this perturbation is diminished in regions of small ∂h/∂x, which are typical of the
slumping stage in a rectangular lock. On the other hand, the hindering effect of the
return flow is accounted for in the correlation of Fr as a function of hN/H which
is expected to be correct for all H � 1. All this provides a plausible explanation for
the observation that the one- and two-layer models results are in fair agreement con-
cerning the initial propagation even for H = 1 (see for example Klemp, Rotunno &
Skamarock 1994 and Ungarish & Zemach 2005). The stratified ambient adds the
complication of deflected isopycnals and internal waves. However, the hydrostatic
approximation for flows over obstacles (see Baines 1995) is consistent with these
perturbations in conditions compatible with our problem. The pertinent restriction
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to wavelengths larger than u∗/N (Baines 1995), is, roughly, equivalent to h0/x0 < 1
in our case. The waves which propagate with the intrusion have, initially, a small
amplitude and occupy a relatively small domain. Consequently, the net pressure effect,
averaged over time and distance, is expected to be small compared with the main
hydrostatic balance. The waves that are radiated ahead in the sub-critical case
(uN <uwave) encounter a relatively large volume of ambient fluid and therefore cause
very small perturbations (including the columnar mode). Finally, there is evidence
(again, mostly for the homogeneous case) that the SW theory, although developed for
h0/x0 � 1, reproduces well observations even for h0/x0 close to 1. We expected (and to
some extent confirmed, in Ungarish & Huppert 2002, 2004 and in the present work)
similarly good performances for the SW extensions to the stratified ambient. Since
agreements with experimental observations were obtained for a fairly large parameter
range (various stratifications, density differences, fractional depths, aspect ratios, lock
geometries) without using any adjustable parameter, this cannot be coincidence.

The deeper reason for this agreement seems to be as follows. The real motion of a
body of fluid released from rest in an initially hydrostatic ambient looks complicated
because of various interfacial effects, but on average the bulk is driven by a simple
internal mechanism, which interacts with the external fluid mainly at the front.
The SW model contains the z-averaged volume and momentum equation which
cast this mechanism into a hyperbolic system with the correct initial and boundary
conditions. The information in this fluid is indeed propagated back and forth by the
SW waves (characteristics). In this manner, the dynamic behaviour in the interior
(including the proper initial potential energy) is matched to the conditions at both
the backwall and the front. The front (or shock) condition was derived from a global
momentum-integral conservation law and hence for the hyperbolic system picks up
the physically meaningful ‘weak solution’, i.e. the proper velocity of propagation. As
the intrusion spreads out, its energy and inertia decay. Eventually, the viscous forces
become dominant and invalidate the model. In the stratified sub-critical case (such
as considered here) the failure of the model may also occur in the inviscid stage due
to a wave–nose interaction, as discussed in § 3.2.

2.3. Method of solution

In general, the SW system must be solved numerically. Here we employed a finite-
difference two-step Lax–Wendroff scheme (Morton & Mayers 1994; Press et al. 1992).
This method has been used successfully for non-stratified gravity currents in various
circumstances (Bonnecaze et al. 1993; Ungarish & Huppert 1998) and here the neces-
sary modifications of the equations and boundary conditions for a symmetric intrusion
in a full-depth linearly stratified ambient were made. The domain 0 � x � xN (t) was
mapped into 0 � y � 1, and the latter discretized into equidistant intervals. In this
work we used, typically, a grid with 200 intervals and the time step 0.005. The code
was subjected to various validation tests, including repetitions of runs with smaller
grid intervals and time steps.

Of particular interest to the present study are the insights provided by the analytical
results of the SW equations. A slumping stage and a similarity behaviour can be
detected during the initial and advanced phases of motion, respectively. These features
are amenable to analytical solutions.

We loosely call ‘slumping’ the phase after the release during which a dramatic
change of shape of the intrusion occurs. Moreover, the SW model predicts that when
the release is from a rectangular lock, in this initial stage the intrusion displays a
very special feature: the velocity of propagation, uN , is constant while the intrusion
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propagates over a distance of one or more lock lengths (this value of uN is attained
instantaneously in the inviscid model). This prediction of the SW formulation is
supported by observations in various experiments as detailed later. The present
formulation provides an analytical solution of this constant velocity of propagation
via the method of characteristics. Indeed, upon the removal of the vertical gate,
the mixed fluid in the rectangular-lock domain is subject to a ‘dam-break’ type of
motion (see also Ungarish 2005). A depression wave of speed c− = − A[1 − σ (1)]1/2

propagates from the gate x = 1 to the backwall x = 0, and the front (nose) starts
to propagate forward as a discontinuity. A shrinking domain of stationary fluid of
height 1 exists between the wall and the backward-moving depression wave, and a
rectangular domain of fluid of constant height hN and velocity uN forms behind the
nose. A typical characteristic moving forward with velocity c+ from the former to the
latter domain carries the information u =0 and h =1. Integration of (2.16) along this
characteristic gives uN as a function of hN . On the other hand, uN must satisfy the
nose condition (2.17). The intersection of these relationships yields

uN = Υ (1) − Υ (hN ) = Fr(hN )h1/2
N [1 − Λ(hN )]1/2A, (2.20)

where

Υ (h) = A
∫ h

0

[
1 − σ (h′)

h′

]1/2

dh′. (2.21)

In general, the solution of this nonlinear equation for hN provides the value of uN .
More explicit forms are obtained for the specific stratifications discussed below.

For release from a cylindrical lock the initial slumping velocity of propagation
is not constant. This more complex behaviour, not amenable to a simple analytical
solution, will be discussed in § 4.

A similarity solution can be obtained for a deep intrusion after the initial conditions
are ‘forgotten’. We shall show in Appendix A that in this case xN (t) ∼ t1/2, while u and
h are simple functions of y = x/xN (t). We recall that the similarity solution of a deep
gravity current in a homogeneous ambient displays the notably different xN (t) ∼ t2/3

and also a different shape of h(y) (see Grundy & Rottman 1985, where other pertinent
references are given).

Quantitative results and comparisons are discussed below for typical configurations
(two with rectangular locks, one with a cylindrical lock).

3. Rectangular lock configurations
3.1. Part-depth transition layer and full-depth lock

Here we consider the cases with fixed H = 1 and various l. This configuration corres-
ponds to the laboratory investigation of Faust & Plate (1984). The intruding (mixed)
fluid initially occupies the full depth of the tank, and the ambient is composed of a
lower layer of ‘heavy’ fluid, an upper layer of ‘light’ fluid, and a linear transition layer
(see figure 1). In this case A = 1, i.e. the reference velocity is U = (g′h0)

1/2.
The relevant experiments were performed with salt water (clearly in the Boussinesq

range) in a tank of 300, 50 and 20 cm length, depth and width. Intrusions with Re � 1
produced by various combinations of fluid depth (h0), lock length (x0), thickness of
density transition layer (l) and total density variation (ε) were tested. The major
qualitative observation was that, in all experiments, the nose of the intrusion propa-
gated with constant velocity for a relatively long distance (practically, over all the
measured interval). The major quantitative result is the value of this velocity of
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propagation. Indeed, the ratio of this measured constant velocity to 2(g′h0)
1/2 (V∗ in the

notation of that paper) is displayed in figure 7 of Faust & Plate (1984), and provides
a very reliable and convenient set of data for direct comparison with the values of
0.5uN predicted by our theory.

The present SW theory predicts propagation with constant velocity during the initial
slumping phase. This prediction is indeed in full agreement with the observations.
The theoretical value of the slumping velocity uN is provided by (2.20)–(2.21). Let us
be more specific. Here l � H = 1, and therefore

Υ (1) =

∫ l

0

1

l1/2
dh +

∫ 1

l

1

h1/2
dh = 2 − l1/2. (3.1)

To proceed, we must distinguish between the following possibilities:
1. Thin density transition layer, l < hN . The calculation of Υ (hN ) and Λ(hN ), see

(2.21) and (2.18), use of (3.1) and substitution in (2.20) yield

uN = 2
(
1 − h

1/2
N

)
= Fr h

1/2
N

(
1 − 1

2

l

hN

)1/2

. (3.2)

The largest uN is expected for l = 0, i.e. the two-layer fluid limit.
2. Thick transition layer, l > hN . Similar calculations give

uN = 2 − l1/2 − hN

l1/2
=

Fr

(2l)1/2
hN. (3.3)

Here the simplest case is the l = 1 limit for which the minimal uN is expected.
The function uN (l) is continuous at l = hN where a switch from (3.2) to (3.3)

occurs. The right-hand sides of (3.2)–(3.3) predict a remarkable reduction of velocity
from l = 0 to l =1: owing to the stratification the velocity of propagation becomes
proportional to hN (instead of h

1/2
N ) and is further reduced by

√
2 (Fr changes little in

this case).
Since H = 1, Fr is a function of hN only. The only free variable in (3.2)–(3.3) is l.

Consequently, the present SW theory predicts that the velocity of the intrusion, scaled
with U = (g′h0)

1/2, is a function of the thickness of the density transition layer, scaled
with the initial thickness of the intrusion. This prediction is, again, in full agreement
with the experimental results of Faust & Plate (1984).

A quantitative comparison is performed next and displayed in figure 2. Both
experiment and theory show a monotonic and quite strong decrease of velocity with l.
The SW results are equal to or slightly below the experimental values (typically by
about 5 %, the experimental error is about 4 %). We think that the agreement between
theory and experiments can be considered as very good, in view of the idealizations
used in the model. Indeed, the typical density difference ε in the experiment was 3 %,
and hence the errors associated with the Boussinesq simplification are already of the
magnitude of the discrepancy.

To summarize: we think that the good agreement of the analytical results, over the
full range of l, with the experiments of Faust & Plate (1984) provides strong support
for our SW theory. We notice that the attempts of Faust & Plate (1984) to interpret
their results in the framework of previous theories failed, and led the authors to
the conclusion (p. 325) “intrusions into a linearly stratified environment behave very
differently from theoretical calculations”. In this context, significant progress has been
achieved: our SW theoretical results predict well the real propagation of an intrusion
as measured by Faust & Plate (1984).
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Figure 2. Comparison with figure 7 of Faust & Plate (1984): 0.5uN (defined as FD in that
paper) as a function of l. The solid line is the present SW prediction, the points and dashed
line are the experimental measurements and the corresponding curve-fit from Faust & Plate
(the cross bars show the experimental error).

3.2. Fully linearly stratified tank, part-depth locks

Here we consider cases with l = H and various H . This configuration corresponds to
the laboratory investigations of Amen & Maxworthy (1980) and de Rooij (1999). The
coefficient A =

√
H , see (2.12)–(2.13), and hence the reference velocity and time can

be expressed as

U =

(
g′h0

H

)1/2

= Nh0, T = N−1 x0

h0

. (3.4)

The dominant waves in the stratified ambient, symmetric about z = 0, are the
linear mode 2 waves (see Baines 1995 and Amen & Maxworthy 1980), and their
(dimensionless) speed is

uwave =
1

π
H. (3.5)

Substitution of l = H and A =
√

H renders the equations of motion (2.14) as

ht + (uh)x = 0, (3.6)

ut + 1
2
(h2)x + 1

2
(u2)x = 0, (3.7)

the nose velocity condition (2.17) as

dxN

dt
= uN = Fr

1√
2
hN, (3.8)

and the characteristic balances (2.15)–(2.16) as

dh ± du = 0 on
dx

dt
= c± = u ± h. (3.9)
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Figure 3. Slumping stage uN and uN/uwave as a functions of H in rectangular lock release.

In this case the first and very significant phase is, again, propagation with constant
velocity provided by the ‘slumping’ result. Substitution of l = H in (2.5) and subsequent
use of (2.20) yield the slumping velocity

uN = (1 − hN ) =
Fr√
2
hN. (3.10)

The influence of H enters via Fr, which is expected to increase with H , but not
dramatically. The behaviour of uN as a function of H is shown in figure 3. The small
variation (from 0.28 to 0.46) over the entire range of H confirms the choice of the
scaling quantities. Also shown in this figure is the velocity ratio between the intrusion
and the dominant wave, see (3.5). This ratio is smaller than 1 for H = 1 and decreases
as H increases; in other words, the nose velocity is always sub-critical. This prediction
is consistent with the available experiments.

Typical results are discussed below.

(i) Comparisons for H = 1

This case (full-depth or lock-exchange release) is of particular interest because it is,
apparently, the simplest and hence the most attractive, from the experimental point
of view. It is also the meeting point of the investigations of Faust & Plate (1984),
Amen & Maxworthy (1980) and de Rooij (1999). On the other hand, this is the most
problematic case from the point of view of the SW theory, because of the strong
return flow in the ambient above and below the intrusion. The one-layer SW model
used here (that assumes a motionless ambient) is expected to lose accuracy. However,
the formal deviations from the one-layer assumptions, caused by the return flow, are
not so severe and even compensated, as explained in § 2.2. Indeed, as shown below,
the model still provides useful and accurate predictions.

In the SW scaling this case has no free parameters, and the slumping velocity
is uN = 0.283 (for the Fr correlation used here). We can make a straightforward
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comparison with the experiments of de Rooij (1999), performed with a saline solution,
a lock of h0 = 0.5x0 = 10 cm in tanks of various lengths (� 100 cm) and N =1.0 s−1

(the assumptions of Boussinesq and inviscid fluid were satisfied well). In all cases, the
velocity of propagation remained constant over at least 5 lock lengths and its value
was 2.9 cm s−1 which, in our scaling, is equal to 0.29. Again, the agreement with the
SW theory is excellent. As in the part-depth density transition layer case, the measured
velocity of propagation is larger than the SW prediction, but the discrepancy of 2 %
only is certainly remarkable.

Two experiments of Amen & Maxworthy (1980), namely runs 167 and 170 listed in
table 1 of that paper, are also with H =1, but the reported propagation is about ten
times faster than that obtained in other compatible configurations (e.g. Faust & Plate
1984 for l = 1 and de Rooij 1999). We therefore think that these discrepancies must
be attributed to a misprint; as suggested by Faust & Plate (1984), it would make
sense to multiply the printed times by 10. This correction is used hereafter, and good
agreement with other experiments and the theory is obtained.†

The relevant NS computation was performed for H = 1 and h0/x0 = 1, to simulate
experiments runs 167 and 170 of Amen & Maxworthy (1980), and with h0/x0 = 0.5
to simulate Ex. 28, 30, 38, 40 of de Rooij (1999). In the computations the tank was
of length xw = 5 and the grid had 280 × 160 intervals. The wave propagating into
the unperturbed ambient with uwave = 1/π did not reach wall at xw during the time
interval considered here. The main difference between these runs is the value of h0/x0.
(Following the experimental data, in the simulations for Amen & Maxworthy we used
Re= 6.7 × 104, see Appendix B, and ε = 0.0125, and in the simulation for de Rooij
we used Re = 4 × 104 and ε = 0.0100. Actually, these differences in the small paramet-
ers ε and 1/Re are insignificant.) Various tests were applied to the numerically gener-
ated data to confirm their convergence and accuracy. In particular, we compared simu-
lations with different grids, time steps, length of tank, xw, and various values of ε.

Results for the distance of propagation as a function of time are shown in figure 4.
There is fair agreement between the results. The NS computations show an initial
adjustment delay, but afterwards the velocity of propagation is fairly constant and in
agreement with the SW and experimental results, in particular with those of de Rooij.
The NS computations confirm the SW prediction that the lock aspect ratio, h0/x0,
has no influence on the initial velocity of propagation (the details of the short initial
velocity nose-adjustment stage are neglected in the inviscid SW theory). According to
both SW and NS predictions, the same initial velocity of propagation is expected in
the experiments of Amen & Maxworthy and of de Rooij considered here. We notice
a scatter of about 12 % between the experimental velocity results of de Rooij and
Amen & Maxworthy. The theoretical result is within this uncertainty margin, closer
to the measurements of de Rooij. These results show very good agreement between
the SW theory and experimental data. (The data of de Rooij 1999 were obtained
by repeating experiments and may therefore be considered to provide more accurate
results than those of Amen & Maxworthy.)

The SW-predicted propagation is the first to decelerate (after t ≈ 4). This is a
consequence of the one-layer model simplification, which underpredicts the slumping
interval when H is close to 1, like in the present configuration. In other words, for
configurations with H close to 1 the SW model predicts very well the initial velocity

† We asked the opinion of Professor Maxworthy. He kindly informed us that he did not keep
the original records of the experiments, but the suggested misprint correction makes sense.
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Figure 4. Distance of propagation as a function of time for configurations with H =1: results
of experiments of Amen & Maxworthy, denoted A & M (with h0/x0 = 1) and of de Rooij
(with h0/x0 = 0.5); the corresponding NS simulations; and the SW model.

of propagation, but underpredicts the time (or distance) over which the constant
velocity stage is maintained. This deficiency of the one-layer model has also been
noted for homogeneous currents (Ungarish & Zemach 2005) and is clearly not a
problem introduced by the stratification in the ambient.

Density contours of the NS solution are shown in figure 5. The nose of the intru-
sion is indicated by the 〉 (this is the foremost position of the domain with scaled
density φ = 0.5; the contours 0.51 and 0.49 enclose this domain). The NS simulations,
performed for the full domain −H � z � H as detailed in Appendix B, confirm
the SW assumption of symmetry about z =0. Some small deviations appear near
the boundaries because in the NS simulations free-slip and no-slip conditions are
applied at the top and bottom, respectively, to reproduce a real experimental tank.
A numerical test with slip bottom conditions confirmed that this has a negligible
effect on the propagation of the intrusion. The resulting shape of the intrusion is in
good agreement with the experimental visualizations presented by de Rooij (1999)
(figure 5.7). A propagation of the density perturbation ahead of the nose is observed.
However, the density perturbations induced by the leading wave are small, at least
during the time considered here. This is, again, consistent with the observations of
de Rooij (1999). The behaviour of the velocity field is illustrated by contour lines
of u in figure 6. The maximum velocity is at the nose and its value is in agreement
with the predictions of the SW theory. A quite strong return flow develops between
the boundaries and the head of the intrusion, as expected for a shallow ambient (in
particular for H close to 1). The flow in the ambient is strongly z-dependent.

The interface of the intrusion is quite smooth at t = 2.8 and 4.2, but at t = 7.1
some wiggles are observed which reflect the influence of the internal oscillations in
the ambient. In spite of these complicated details, the averaged SW formulation
is able to predict with fair accuracy the propagation as a function of time. This
indicates that, on time and space average, the leading balances are still captured well
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Figure 5. Density contour lines for H = 1, h0/x0 = 1 at various times. NS computations for
experiment run 167 of Amen and Maxworthy. The nose is marked by 〉.
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Figure 7. Distance of propagation as a function of time for H = 2.27: experiment run 117 of
Amen & Maxworthy, NS computations, and SW model.

by the shallow-water assumptions, including the Froude condition at the nose, for
quite significant length and time intervals. Eventually, the wave–nose interaction may
become dominant, but this effect is beyond the range of this simulation, as discussed
later.

(ii) Comparisons for H = 2.27

The experimental points were taken from Amen & Maxworthy (1980), run 117 (salt
water, h0 = 6.16 cm, N = 0.57 s−1). The aspect ratio of the lock is h0/x0 = 0.33, among
the smallest in the set of experiments.

The Navier–Stokes solver simulated this configuration using a 260 × 180 mesh (the
numerical tank was of length xw = 5.5), ε = 4.64 × 10−3 and Re =2.5 × 104.

Distance of propagation as a function of time is displayed in figure 7. The experi-
mental and theoretical results are, again, in good agreement. At t ≈ 6 a strong
deceleration of the intrusion is observed in both experiment and NS simulation. This
is attributed to the wave–head interaction, discussed later, an effect not resolved by
the SW formulation. Indeed, the SW predictions are in very good agreement with the
NS computations until this time when interaction begins. In this case the layer of
ambient is quite thick compared to that of the intrusion (the typical H/hN is about 5)
and hence the one-layer SW model is expected to be a good approximation.

Consider the density contours of the NS solution shown in figure 8, which reveal the
complex wavy features of the flow field. The waves in this case are significantly more
pronounced than in figure 5. The main reason is the different value of h0/x0 (which
is 0.33 in figure 8 and was 1 in figure 5; we estimated that the typical wavelength is
2πuN (h0/x0). To strengthen this argument, we computed the flow of a configuration
similar to that of figure 8, but with h0/x0 = 1. The results (not displayed here)
confirmed that a similar propagation of the intrusion occurs, but with considerably
smoother isopycnals (longer wavelengths). Another reason for the wavy appearance
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of the flow field is the velocity of propagation of the leading waves, see (3.5). In the
present configuration uwave =0.72, in contrast to only 0.32 in the case of runs 170
and 167 (figure 5). However, these waves introduce only weak disturbances in front
of the intrusion and the length of the tank in the computation was sufficiently large
to avoid reflections during the time interval considered.

The velocity field is illustrated by contour lines of u in figure 9. The return flow
in the ambient is quite complex and concentrated in layers (or patches) close to the
intrusion. At t = 6 the nose of the intrusion is at x ≈ 3, and we observe that the
velocity field in this region is quite weak and smeared. This reproduces the effect of
the interaction between the waves and the head.

(iii) A general comparison with the experiments of Amen & Maxworthy (1980)

The experiments are for 1 � H � 2.5, 0.29 � h0/x0 � 1.05, and typical Reynolds num-
ber 104. In general, our predictions are consistent with the data. However, we also
found some exceptions, and our conclusions are based on a selected sub-set. We
discarded some experiments which we judged to be inconclusive because of big scatter
about the main trend. The details and justifications are presented in Appendix C.

In any case, our interpretation of the data concerning the propagation of the
intrusion is different from that of Amen & Maxworthy. Following Wu (1969), Amen
& Maxworthy plotted the measured xN as a function of Nt∗ on log-log axes, and
marked two special points: (i) the ‘lower tangent point’ (let us denote its time and
position as (t1, x1) and (ii) the ‘upper tangent point’ where a sharp deceleration starts,
denoted here (t2, x2). Inspired by the observations of Wu (obtained for a cylindrical
lock in a quite deep intrusion) they identified the motion from the initial point (0, 1)
to (t1, x1) as the ‘initial collapse stage’ and the motion from (t1, x1) to (t2, x2) as the
‘principal stage’. To the later stage Amen & Maxworthy fitted the self-similar form
of propagation xN ∼ tn. The values of the tangent points and of the resulting n for 25
experiments are given in table 1 of that paper. The deceleration after t2 was attributed
to viscous effects. There are several objections to this interpretation.

The present SW theory indicates that the rectangular-lock problem of Amen &
Maxworthy is expected to be quite different from that of Wu. The stage of self-
similar propagation ∼ tn is expected to develop at larger t (compared to Wu), after a
slumping stage of constant uN . An inspection of the results of Amen & Maxworthy
indicates that the typical values of x1 are not sufficiently large for the start of the
self-similar phase, and the values of Re at x2 are not sufficiently small for the start of
the dominant viscous influence. Moreover, the experiments of Faust & Plate (1984),
de Rooij (1999), and Maxworthy et al. (2002) clearly indicate that for release from
a rectangular lock the initial propagation is with constant velocity for times and
distances similar to the recorded t2 and x2. Thus, in order to reconcile the experiments
of Amen & Maxworthy with later experiments and with the present theory, a novel
interpretation is needed.

Our conjecture is that the results of Amen & Maxworthy up to t2 can also be fitted
into the constant-slumping-velocity framework. This was tested by the calculation of
velocities from the data (see Appendix C for details). Nine of the 25 experiments
confirm this constant-velocity expectation within about 2 % error, and nine more
within about 10 %. We think that this is the correct conclusion from the experimental
data. (In the other seven cases the deviation from the constant-velocity pattern is
larger, up to about 35 %, but the velocity results are scattered and sometimes lack
internal consistency. We therefore think that these results are rather inconclusive and
can be discarded from the discussion of the velocity pattern.)
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Figure 10. Distance of propagation where sharp deceleration begins. The lines are the present
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Maxworthy, the X and Y show experiments of Maxworthy et al. (2002) (M2002) with bottom
gravity currents.

In our interpretation, x2 is the end of the constant-velocity phase (not the start of
the viscous influence). In particular, this may be the point where the first wave–nose
interaction occurs (figures 5(c) and 5(e) of Amen & Maxworthy (1980) indeed display
a typical wavy kink at this position). We can estimate theoretically this position as
follows. Maxworthy et al. (2002) observed that the first wave moves with the head
of the current, and after the second wave is created the first wave starts to move
relative to the head and affects the velocity when its crest catches the nose. We
postulate that this is the generic pattern of behaviour in the time interval from release
to interaction. The expected wavelength, scaled with x0, is 2πuN (h0/x0) (2πu∗

N/N in
dimensional form). Thus, the distance required for the formation of two waves between
the position of the gate x = 1, and the front x = xN , plus the additional propagation
of the wave crest with relative velocity uwave − uN over the (1/4) wavelength (to the
position where maximum interaction is attained), yields

x2 = 1 + 2π
h0

x0

uN

[
2 +

0.25uN

uwave − uN

]
. (3.11)

Using the values of uwave and uN provided by (3.5) and (3.10), we find that for a fixed
H the resulting x2 is a linear function of the lock aspect ratio h0/x0, and the slope of the
line decreases when H increases. Since the return flow in the ambient will reduce the
absolute velocity of the wave, our formula is expected to underestimate x2. Figure 10
shows experimental values of x2 − 1 and the above estimate (for two values of H

which bound the experiments of Amen & Maxworthy (1980)). The data of 20 out
of 25 experiments seem to collapse in the predicted manner. (The other experimental
results displayed values of x2 larger by more than 100 % than estimated by (3.11),
and were not shown. We think that the reason is that the first wave–nose interaction
was weak, and therefore not recorded.) To strengthen our conjecture we also added
two points from the experiments of Maxworthy et al. (2002) (Runs 11 and 24,
see table 1 of that paper). These experiments were for bottom gravity currents under
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conditions which approximate well a symmetric intrusion, and, again, motion with
constant velocity was observed in all cases for a significant distance.

When H is close to 1 the difference between uwave and uN is small, see figure 3, and
therefore the interaction is delayed; this is consistent with the observations. Moreover,
in this case the return flow in the ambient is significant, and therefore the real x2

is significantly larger than our one-layer model estimate, as expected. These considera-
tions explain why the interval of constant velocity is so large in the experiments for
the H = 1 configuration. On the other hand, according to this model, for large H the
interaction is expected almost as soon as the second wave appears. However, these
considerations did not take into account the dam-break motion in the mixed fluid;
the combined influences may produce effects which require additional investigation.

The effect of the interaction between the wave and the head is indicated by the NS
simulation of experiments of Amen & Maxworthy with small h0/x0 at t ≈ 6 in figures 8
and 9 for the case with H = 2.7, h0/x0 = 0.33. We observe that the main body of the
intrusion becomes separated from the leading blob. The SW approximation, developed
for a density-driven flow, is evidently not expected to be valid in these circumstances
of transition to a wave-dominated flow. It is plausible that subsequently the leading
portion of the intrusion will behave like the ‘isolated propagating flow’ phenomena
investigated for descending thermals by Manasseh, Ching & Fernando (1998) (where
other important references are given). The theoretical details of this transition and
the evolution into the wave-dominated pattern require a separate investigation.

4. Cylindrical lock in a fully linearly stratified tank
The release from a cylindrical lock into a fully linearly stratified ambient (l = H )

is relevant to the configuration studied experimentally by Wu (1969). Here h0 = x0,
A =

√
H , and hence the reference velocity and time can be expressed as

U =

(
g′h0

H

)1/2

= Nh0, T = N−1. (4.1)

The geometry of the lock introduces a sharp difference with the counterpart con-
figurations of Amen & Maxworthy (1980) and de Rooij (1999) discussed in § 3.2. The
contribution of this factor has not been properly considered in previous investigations
and some confusion emerged. It is our objective to clarify this point. Another, and
perhaps related, reason for ambiguity is the time scale of propagation. Following
Wu, many investigations used the dimensionless time Nt∗ (which is based on the
frequency of the internal waves in the ambient), but our SW formulation indicates that
Nt∗(h0/x0) (based on the propagation of the shallow-water waves in the intruding
fluid) is more appropriate. Indeed, the initial motion is expected to be dominated by
the propagation of the characteristics inside the body of mixed fluid, not by the waves
in the ambient (see Ungarish 2005). These dimensionless times are identical for Wu’s
experimental configuration with (h0/x0) = 1.

The speed of the waves in the ambient, the SW equations and boundary conditions
for u are as for the rectangular case discussed in § 3.2. The motion starts, again,
from rest. Up to this point the formulation is identical with that of the counterpart
rectangular configuration discussed in § 3.2. Thus, (3.5)–(3.9) with h0/x0 = 1 can be
applied. The change is in the initial condition of the interface, which is now

h(x) = (1 − x2)1/2 (0 � x � 1, t = 0). (4.2)
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Figure 11. SW predictions for cylindrical lock, H =4 (Wu’s configuration): h and u
profiles as a function of x at various t .

A simple analytical solution by the method of characteristics of the motion after
release (like in the rectangular ‘dam-break’ problem which led to (3.10)) is not feasible.
However, some useful approximations for the initial motion can be made. Since u

and the (upward) displacement of the interface 	h are initially very small, we expand
these variables in powers of t . Substitution in (3.6)–(3.7) yields the leading terms

u = xt, (4.3)

	h =
1

2

2x2 − 1

(1 − x2)1/2
t2. (4.4)

Note the stagnation point of the interface at x = h = 1/
√

2 where 	h= 0. The results
indicate that immediately after release the intruding cylindrical body of fluid shrinks at
the rear (	h < 0) and thickens at the front (in remarkable contrast with a rectangular
dam-break release). An inspection of the neglected terms (and comparisons with
the numerical solution) indicates that these approximations are valid for t � 1 and
x < 1. The (quite weak) singularity of 	h at x = 1 is relaxed by the development of a
front of increasing height hN that propagates forward to xN > 1. The details cannot
be obtained from this approximation, but continuity with (4.3) and characteristic
balances indicate that hN ≈ uN ≈ t .

The finite-difference code for the SW equations handles the initial conditions of the
cylindrical lock with no special difficulties (the numerical starting condition must be
some small positive hN , say 0.01, but the sensitivity to this condition in the subsequent
solution, say, at t > 0.05, is very low). Comparisons with the finite-difference solution
of the SW equations indicate that the previous approximate results capture well the
features of the initial behaviour (0 < t < 1) and are in good quantitative agreement
for t < 0.5.

In figure 11 we show, for the configuration of Wu, the SW profiles of the interface
and velocity of the intrusion at various times. The shape is in fair agreement with
the experimental observations sketched in figure 2(b) of Wu (1969). Contrary to
common previous analytical models, the SW-modelled cylindrical-lock intrusion does
not develop and preserve an elliptical shape. The behaviour of h and u in the
rectangular-lock counterpart case is shown in figure 12. The SW predicted velocity of
propagation uN for Wu’s configuration and the rectangular counterpart are shown in
figure 13.
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Figure 12. Rectangular-lock counterpart to figure 11: SW predictions of the h and u
profiles as a function of x at various t .
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Figure 13. Velocity of propagation SW results: cylindrical lock (solid line) and
rectangular-lock counterpart (dashed line). Here H = 4.

The main conclusion is that the initial behaviour in the cylindrical-lock case is
different from that of the rectangular-lock counterpart. The reason for this effect
is not the kinematic volume difference, but rather the internal dynamics and force
distribution. In the hydrostatic state the mixed fluid in the cylindrical lock is subjected
to a significant pressure gradient in the x-direction. Therefore, the removal of the lock
induces accelerations in the whole body of fluid, and, from the start, a linear- with- x

velocity profile develops, and the interface rises quickly in the domain x > 1/
√

2 and
descends in the domain x < 1/

√
2. The overall initial trend is to straighten the interface

to a horizontal position h ≈ 0.7 at t ≈ 1, while the nose almost develops the height
and velocity of the slumping rectangular counterpart. However, the moving nose
and the trailing region at x > 1 cannot maintain a constant-speed motion (as in the
rectangular counterpart) because the forward-propagating characteristics that enter
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this region are bound to carry time-dependent conditions. The SW approximation is
expected to remain valid because the initial motion is governed by the hydrostatic
pressure distribution, and subsequently the horizontal motion becomes dominant.

The SW velocity of propagation in Wu’s configuration, see figure 13, has a clear two-
stage pattern, of acceleration followed by deceleration, with a maximum at t ≈ 2. The
rectangular counterpart displays slumping with constant uN and the deceleration starts
later, at t ≈ 3.2. The early transition to the deceleration phase renders the cylinder-lock
configuration more prone to the self-similarity behaviour than the rectangular-lock
counterpart. It is remarkable that, according to the SW results, the maximum uN of the
cylindrical lock release is equal to the constant slumping velocity of the rectangular-
lock counterpart, i.e. the same H . This result can be explained via the balances on the
characteristics c+ which propagate from the initial stationary fluid in the lock. The
special characteristic from x = 0, t = 0 in the cylindrical lock carries to the front the
same information as all the characteristics released at t = 0 in the rectangular lock.
Therefore the agreement in uN is for a special point only.

We deduced that the SW propagation of an intrusion from a rectangular lock is
always sub-critical, see figure 3. We now combine this result with the previous outcome
concerning the maximum uN attained in release from a cylindrical lock. We reach the
conclusion that the propagation from a cylindrical lock release is also always sub-
critical. This prediction of the SW theory is consistent with the observations of Wu.

Finally, we compare the present SW predictions of xN as a function of t with
the results of Wu (1969). The experiments were performed in a saline stratified tank
with H = 4. The curve-fitted experimental data of propagation as a function of time
produced the often-quoted formula

xN wu

=

{
1 + (0.29 ± 0.04) (Nt∗)1.08±0.05 (0 � Nt∗ � 2.5) (the initial collapse stage)
(1.03 ± 0.05) (Nt∗)0.55±0.02 (3 � Nt∗ � 25) (the principal collapse stage).

(4.5)

This result has been considered as a prototype of the behaviour of an intrusion, but
there is no reason why it should be valid for a configuration with a non-cylindrical
lock and H = 4. The deviation bounds of the coefficients indicate a scatter (or error)
of about ± 10 %. The accuracy of the fit in the first stage is remarkably low, with
deviations of up to 14 %. In our opinion, this is the result of the over-simplified fit
rather than of experimental errors.

The comparison is shown in figure 14. The agreement between the SW solution
and the experiment is very good. To be specific: the SW xN is always larger than the
value of (4.5), by at most 8 %, for t � 25. However, if we compare with the upper
bound (due to scatter of data) of Wu’s fit, xN = 1.08(Nt∗)0.57 for the second stage, we
find that the SW results are smaller by about 2 %. We emphasize that the theory has
been developed from first principles without any free adjustable parameters or use of
specific empirical information taken from the experiment of Wu. This is in contrast
with the previous models of Kao and Manins. The tendency of the theoretical SW
prediction to overestimate the propagation can be attributed to the presence of small
viscous and mixing dissipations in the real flow. The fact that the discrepancy is in
the range of the experimental error provides, again, good support for the present SW
formulation.

The SW model predicts that the transition from acceleration to deceleration occurs
at t =2. This is consistent with the transition at about t = 2.5 between the ‘collapse
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Figure 14. Results for Wu’s configuration (cylindrical lock, H = 4) of xN as a function of
time: Wu’s experimental fit, SW solution with initial conditions, and SW similarity result for
large t with γ = −1.7 (see Appendix A). In the present case t = Nt∗.

stages’ of Wu. The discrepancy (about 1 s in dimensional units) can be attributed to
the lock removal interval (reported as 0.8 s). The very complex initial motion expected
during this interval (at least) explains the low accuracy of Wu’s simple curve-fit in the
initial stage.

Wu’s results are expected to provide a test case of the self-similarity solution dis-
cussed in Appendix A, because: (a) the recorded decaying-velocity regime starts quite
early (t = 3) and covers a fairly long dimensionless time (t = 25); and (b) the intrusion
is fairly deep (hN/H ≈ 0.1). The comparison, shown in figure 14, indicates that the
predicted self-similarity behaviour is consistent with the experiments for t > 10 (more
details are given in Appendix A).

5. Concluding remarks
The propagation of a symmetric intrusion (mixed fluid) of a given volume released

at the neutral buoyancy level in a stratified ambient was considered. We introduced
a new analysis, based on a one-layer shallow-water (SW) closed formulation, and
backed by numerical solutions of the Navier–Stokes (NS) problem. Predictions were
obtained for realistic geometries, and initial and boundary conditions. The theory
does not rely on adjustable constants or predetermined shapes. Comparisons with
published experimental data were performed.

Some essential issues have been clarified concerning the initial stages of propagation
in stratified ambients (with both part-depth, l < H , and full-depth, l = H , density
transition layers), in particular: the governing parameters and the influence of H and l

on the velocity of propagation; similarities and differences between release from
rectangular and cylindrical locks; the existence of a self-similarity solution and its
connection with box-model approximations. All the theoretical results are consistent
with the available experimental data.
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The theory predicts that: (i) an intrusion released from a rectangular lock will
propagate during the initial slumping stage with constant velocity, like a classical
homogeneous gravity current; (ii) in contrast, the propagation after release from
a cylindrical lock displays a clear acceleration–deceleration pattern; the maximum
velocity is, remarkably, equal to the slumping uN of a rectangular lock configuration
with the same H . The deceleration process, which leads to a self-similar propagation,
starts sooner than in the rectangular lock counterpart.

Prediction (i) is firmly supported by experimental and numerical results. The experi-
ments of Faust & Plate (1984) provide a stringent test for uN as a function of l in
a full-depth lock configuration. The good agreement, within about 5 % over the full
range of 0 � l � 1, provides strong support for the SW theory. For the fully stratified
ambient the SW slumping velocity is in agreement with the experiments within about
2–15 %. There seems to be no systematic discrepancy because the measurements are
scattered about the theoretical curve (see figure 15). The SW slumping distance is
shorter than the experimental and numerical values; this is a known deficiency of
the one-layer model for H < 2.

Prediction (ii) is consistent with the experiments of Wu (1969). The predicted SW
xN (t) agrees with the experimental curve-fit within the reported margin of accuracy
of the latter.

For the developed motion, it was shown that propagation with t1/2 is an exact
similarity result of the SW equations in a very deep (say, H/hN > 10) linearly
stratified ambient. (For an intrusion in a shallow ambient the developed propagation
corresponds to a larger power of t , approximately 3/5. For this case no exact solution
of the SW equations was found.) Only the volume of the intrusion (not the shape
of the lock) is relevant to the self-similar stage of motion. The experiments of Wu
provide the only appropriate test case with (marginally) sufficiently deep intrusion and
long time of unperturbed decaying motion. The experimental propagation is with the
power 0.55 ± 0.02. We consider this an encouraging, but not clear-cut, agreement. In
any case, the agreement with our result is better than with the homogeneous-current
counterpart power 2/3.

The SW theory predicts that the velocity of the intrusion in a full-depth linearly
stratified ambient is always sub-critical, for both rectangular and cylindrical locks, in
agreement with the experimental observations. The excess over critical speed is about
10 % at H = 1 and increases with H .

The initial aspect ratio of the mixed fluid region (or of the lock), h0/x0, does not
enter the SW formulation, and has little influence on the (properly scaled) velocity
of propagation (before the interaction with the internal waves begins). However,
we showed that the wavelength of the density-field perturbations is proportional to
this parameter. Consequently, the length of ‘unperturbed’ propagation (i.e. before the
interaction between the waves and the head of the intrusion stars) is proportional to
h0/x0. An estimate for the position x2 where the interaction begins was presented.
This is consistent with the experimental data. A quantitative comparison was not
attempted because a clear-cut definition of the interaction phenomena is lacking. This
effect and the behaviour afterwards are left for future investigations.

The present SW formulation uses the one-layer model, which discards the motion
of the ambient fluid. The model provides an excellent qualitative description of the
initial motion, including accurate results for the velocity of propagation even for the
H = 1 case. This good agreement (in many cases within the range of the experimental
errors and/or of the deviations from the Boussinesq and inviscid idealizations) cannot
be just coincidence. In our opinion, this is a clear-cut indication that the components
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of the model, although not rigorously justified theoretically, capture well the essentials
of the underlying physical mechanisms. This conclusion applies to the combination
of: (i) the hyperbolic volume and momentum governing equation (2.14); (ii) the Fr
correlation (2.19) (taken ‘off the shelf’ from the knowledge on the homogeneous
gravity current); and (iii) the nose driving-force conjecture (2.17). All these com-
ponents are necessary for the accurate description of the initial motion. It therefore
makes sense to encourage the use and further development of these components.
However, the one-layer assumption prevents the investigation of coupling effects
between the upper and lower layers of fluid and is expected to be less accurate in the
prediction of various details of the flow for configurations with H close to 1. In non-
stratified circumstances the influence of the upper layer of fluid can be incorporated
in a two-layer SW model. This coupling turns out to have a significant effect on some
features (e.g. the slumping distance) for H < 2 configurations, as pointed out by
Rottman & Simpson (1983), Klemp et al. (1994) and Ungarish & Zemach (2005).
Unfortunately, the formulation and analysis of a corresponding two-layer model,
with a second layer of stratified fluid, seems to be a formidable task. Theoretical
considerations and the NS solutions indicate a very complex flow in the second layer
which defies a straightforward extension of the homogeneous counterpart model.
These topics are left for future work.

Overall, we think that good progress has been achieved from the motivating remark
of Faust & Plate (1984): ‘intrusions into a linearly stratified environment behave very
differently from theoretical calculations’, but there still are many topics that need
investigation, both theoretically and experimentally. For example, three-dimensional,
viscous and asymmetry effects, which were not incorporated in the present analysis,
may play an important role in practical circumstances. Analytical and numerical
studies of these effects are interesting topics for further investigations.

The state of experimental data prevents sharper conclusions about the performance
of the present theory. Indeed, the information that can be obtained from the available
experimental data is quite limited in both range and reliability. The available
experiments cover only non-deep intrusions (H � 2.5 for rectangular lock release;
and H = 4 for cylindrical lock). There are inconsistencies in the reported data, and
almost no overlap between the parameter ranges considered by different parties. Most
of these experiments were performed more than 20 year ago. We hope that the present
study will provide the background, guidelines and the motivation for new and more
complete sets of experiments.

Thanks to Professors T. Maxworthy, H. E. Huppert and J. Lister and Mrs T. Zemach
for stimulating discussions and useful comments. The research was supported by the
Fund for Promotion of Research at the Technion.

Appendix A. Similarity solution and box-model approximations

We consider a full-depth stratified ambient, l = H . The coefficient A =
√

H , and
the reference velocity and time are given by (3.4).

Self-similarity solutions play an important role in the SW analysis of gravity currents
in a homogeneous ambient (see Grundy & Rottman 1985 and Slim & Huppert 2004
where other pertinent references are given). A natural question is whether and how
this feature can be extended to the present problem.

We sought a self-similarity solution of the present SW equations of motion and the
corresponding nose condition, for large values of t . When the intrusion is deep it is
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justified to assume that Fr =const (= 1.19 in our case, see (2.19)). For this case, we
found that (3.6)–(3.8) are satisfied by

xN (t) = K(t + γ )1/2, u = ẋN (t)y, h = (b2 + y2)1/2ẋN (t), (A 1)

where y = x/xN (t) is the stretched horizontal coordinate, K and γ are constants,

b2 =
2

Fr2
− 1, (A 2)

and the overdot means differentiation in time. We note that for the special value
Fr =

√
2 (the value for the ideal deep homogeneous current developed by Benjamin

1968) the shape of h is linear with y. In any case, the present result for a linearly
stratified ambient is very different from that of a current in a homogeneous ambient
(xN ∼ t2/3, h ∼ (C + y2)ẋ2

N (t)), where C is a positive constant).
Conservation of the volume, V, determines the value

K = (2V)1/2

[∫ 1

0

(b2 + y2)1/2 dy

]−1/2

. (A 3)

In the present scaling the values of V are 1 for the rectangular lock and π/4 for the
cylindrical lock. We obtain K = 1.537 and 1.362, respectively.

The resulting flow has a ‘virtual origin’ because the physical u =0 conditions and
geometry of the lock at t = 0 cannot be imposed. The real time coordinate can be
shifted by the parameter γ to achieve matching with the real initial slumping phase
behaviour. This parameter turns out to be negative and, as expected, of order unity.
Evidently, the applicability of the similarity solution to a real intrusion is only after
the decay of the slumping stage, i.e. t > 3, at least. (This estimate is based on the time
required for a backward–forward propagation of the characteristic in the initially
motionless fluid, see (3.9), and is supported by detailed solution of the SW equations.)

The similarity solution is interesting from the academic point of view, as an exact
solution to the governing PDE which describes the asymptotic t → ∞ tendency of the
system. Owing to its simplicity and rigour, it may be useful (a) for various tests of
numerical schemes, and (b) as a basic state for perturbation techniques (e.g. Hogg,
Ungarish & Huppert 2000; Harris, Hogg & Huppert 2002). We expect that the present
result will facilitate the study of the transition to a wave-dominated motion. However,
for practical applications the similarity solution is a quite weak predictive tool: it
is restricted to deep intrusions at large times after release, and it is quite plausible
that viscous, mixing and wave effects become influential in these circumstances.
Moreover, the value of γ depends on the initial conditions and hence some additional
assumptions, calculations or experiments must be involved in the use of (A 1).

The only available experimental test case for the similarity result is provided by Wu
(1969). The other experimental results considered in our paper were not expected to
display this behaviour because (a) the value of H is not sufficiently large, and (b) in
rectangular-lock-release the transition to similarity is delayed by the constant-velocity
slumping phase.

The comparison is displayed in figure 14 (§ 4). The details need some clarification.
Our similarity result for a cylinder lock is xN (t) = 1.36(t + γ )1/2. We obtained γ =
−1.7 from matching with the finite-difference SW computation. Wu’s curve fit proce-
dure ignored the ‘virtual origin’ constant γ and therefore obtained xN (t) = (1.03 ±
0.05)t0.55±0.02. It still makes sense to compare the exponents, because, for t > 10 (say)
the slope of xN vs. t on a log-log plot (as used by Wu) will be little influenced by γ .
The experimentally derived power of t is larger by 7–14 % than the theoretical 1/2.
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A plausible explanation for this discrepancy is as follows: the t1/2 propagation
corresponds to a constant value of Fr, i.e. a very deep intrusion. The values of hN/H

in the experiment changed from about 0.15 to 0.10, and therefore Fr still increases
during the propagation, see (2.19), and a more rapid than t1/2 spread is expected.
On the other hand, we recall that the similarity solution for a homogeneous ambient
predicts the power of 2/3. Wu’s result is clearly much closer to our prediction.

A simple box-model approximation can be obtained by the assumption that the
similarity shape of the intrusion is a rectangle. Volume conservation xN (t)hN (t) = V,
the nose condition (3.8) and the correlation (2.19) yield a simple expression for dxN/dt

whose integration provides

xN (t) =




[
5H 1/3

6
√

2
V2/3

]3/5

(t + C)3/5 (0.075 � hN/H � 1)

[1.19
√

2V]1/2(t + C)1/2 (0 � hN/H � 0.075, deep intrusion).

(A 4)

The constant C is determined by an initial condition, such as xN = 1 at t = 0, or by
matching with a different result if available (as in Kao’s theory discussed below). The
speed of propagation decays with time and hence the initial (slumping) stage of motion
(with constant or increasing speed) is not properly described by this approximation.
On the other hand, we note that for a deep intrusion and large t there is perfect
agreement with the similarity solution concerning the spread with t1/2; this indicates
that this behaviour is mainly a consequence of the nose condition and in particular
the assumption that Fr is a constant. The models of Manins (1976) and Kao (1976),
discussed below, also reflect this feature. On the other hand, we realize that an
intrusion that is not deep (hN/H > 0.075) is expected to propagate according to t3/5.
This theoretical indication of a larger than 1/2 power of t during the developed
stage of propagation of an intrusion has not been presented before, to the best of our
knowledge. However, this indication seems to be consistent with the power 0.55 ± 0.02
measured by Wu.

A comparison of the present SW results with the theoretical models of Manins
(1976) and Kao (1976) is now in order. Neither of these two models is based on a solu-
tion of a system of governing equations, and both assume a predetermined shape of
the intrusion in the principal (similarity) stage of motion: Manins an ellipse and Kao
a rectangle. These shapes, and in particular the ellipse, are evidently in disagreement
with the SW and NS solutions and with experiment (see figure 2(b) of Wu 1969).
Moreover, these models attempted to reproduce Wu’s observations and do not discern
the influences of H , l, and of the initial shape of the lock on the behaviour of the
intrusion. We note that Kao developed and used the nose condition uN =hN (in our
notation) which corresponds to a constant Fr =

√
2 in our equation (3.8). Using this

condition, plus conservation of volume V = π/4 and the assumption that the intrusion
has a rectangular box shape, the propagation xN =1.25(t + C)1/2 emerges, and this is
essentially Kao’s result for large t . The correspondence with the present box-model
result for a deep intrusion, see (A 4), is evident. The value C = −0.57 has been deter-
mined by Kao via matching with an analytical approximation of Dugan et al. (1976)
for the ‘initial stage’ (t � 2.05); the validity of this matching is debatable. Manins pos-
tulated a propagation nose condition based on an integral ‘internal’ Froude number,
actually an adjustable parameter chosen to fit Wu’s experiments; there is no clear-
cut nose condition because the assumed elliptical shape imposes hN = 0.

To summarize, Kao’s description is more consistent with the present SW results than
Manins’. Both Kao and Manins obtained the propagation xN = K(t + γ )1/2 for large t ,
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for the cylindrical lock release, by using some momentum-integral (or box-model)
approximations. We showed here that this is a self-similar solution of the present SW
governing equation, and a particular case of the approximations (A 4). These previous
models can be considered a subset of approximate results of the present SW theory.
They can now be dismissed (with due credit) because the present SW theory is based
on a more rigorous formulation and has a much broader range of application and
validity.

Appendix B. The Navier–Stokes simulations
We use a numerical finite-difference code which is a modified version of the software

developed for the solution of a bottom gravity current in a channel, Ungarish &
Huppert (2002). Symmetry with respect to the neutral-buoyancy level is not assumed,
and hence the scalings of the variables and the position of z = 0 are different in the
code described in this appendix from the SW formulation used in the main text.

The two-dimensional lock-release problem is simulated in a bounded rectangular
domain, 0 < x < xw, 0 <z < 2H . The lock is in 0 � x � x0, zl(x) � z � zu(x), where
max(zu − zl) = 2h0 (here in dimensional form). For the rectangular lock zl, zu are
constants, and the cylindrical lock is a semicircle with h0 = x0.

For numerical convenience we introduce the density function φ(r, t) by

ρ(x, t) = ρo[1 + εφ(x, t)], (B 1)

where

ε =
ρb − ρo

ρo

. (B 2)

We expect 0 � φ � 1 in the domain of the ambient fluid, and φ = φc < 1 in the domain
of the ‘mixed’ intruding fluid. In the linearly stratified symmetric case discussed here,
φc = 0.5.

We employ the following dimensionless balance equations:
1. conservation of volume

∇ · v = 0; (B 3)

2. momentum balance

Dv

Dt
=

1

1 + εφ

[
−∇P − φẑ +

1

Re
∇2v

]
, (B 4)

where P is the reduced pressure (defined in dimensional form by P = p + ρogz);
3. density transport

∂φ

∂t
+ ∇ · (vφ) = D∇2φ. (B 5)

The relevant dimensionless parameters, in addition to ε, are the Reynolds number,

Re = UL/ν, (B 6)

and the dimensionless diffusion coefficient D = 1/Pe= 1/(σRe), where Pe and σ are
the Péclet and Schmidt numbers, respectively. Here L and U are the scaling length
and velocity. In the numerical computations we employ L = x0 (the dimensional
length of the lock) and U = (εgx0)

1/2. The scale for time is L/U.
We are interested in flows with large values of Re, small ε and very small D.

Actually, the typical physical value of D is negligibly small (recall that σ � 1 for
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saline solutions in water), but here a non-vanishing D is used in the solution of
(B 5) as an artificial diffusion coefficient for numerical smoothing of the large density
gradients of the moving interface.

The initial conditions at t = 0 are

v = 0 (0 � x � xw, 0 � z � 2H ) (B 7)

and

φ =




φc (0 � x � 1, zl(x) � z � zu(x))

1 − z

2H
elsewhere.

(B 8)

In the present runs zl and zu were symmetric about the midplane, and φc = 0.5.
The boundary conditions for t � 0 are

v = 0 (on the bottom and sidewalls); (B 9)

w = 0, and no shear (z = 2H ); (B 10)

and

n̂ · ∇φ = 0 (on all boundaries), (B 11)

where n̂ is the unit normal vector.
These conditions contain some simplifications, in particular (B 10), which is the

frictionless ‘rigid lid’ approximation for the free surface. In practical situations the
free upper surface may have a height perturbation of magnitude ε during the flow.
In addition, we assume that the lock is removed instantaneously and without any
perturbation to the fluid, and that the flow is laminar.

The foregoing system of equations and boundary conditions was solved by a
time-marching, finite-difference discretization method. The details are described in
Hallworth et al. (2001) and will not be repeated here. The addition of stratification
did not create any special numerical difficulties.

Briefly, the method is based on forward-time discretization of the velocity com-
ponents, with implicit pressure terms. For each time step the continuity equation for
the ‘new’ velocity field yields an elliptic equation for the ‘new’ pressure field.

The spatial discretization is performed on a staggered grid with il radial intervals
and j l axial intervals. The variables P and φ are defined at mid-cell position denoted
(i, j ), u is defined at positions (i ± 1

2
, j ) and w is defined at (i, j ± 1

2
). Central spatial

differences were used, with the exception of forward and backward differences for
the advection terms in the density transport equation (B 5), which was treated by a
MacCormack method to avoid spurious oscillations associated with the discontinuity
of φ at the interface between the intrusion and the ambient. For this purpose we also
used artificial diffusion, i.e. a larger value of D than dictated by molecular diffusion.
This is justified by the fact that in the physical salt-water system used in the laboratory
experiments, the value of the Schmidt number σ = 700, and hence the resulting
diffusion layer during the time of propagation of the intrusion considered here is very
thin, beyond the resolution of the feasible numerical grids. The truncation errors are
second order in both time and space, and the grids and time steps were chosen with
the aim of achieving accuracies of about 1 % in the velocity and φ fields. The major
computational effort was invested in the solution of the discretized Poisson equation
for Pi,j at all grid points for each time step, by a bi-conjugate gradient method.

Typically, the simulations use xw =5, grids of 200 × 200 intervals, and a time step
5 × 10−3. Various tests and comparisons, performed with different grids and para-
meters, support the physical reliability of the results and indicate the numerical
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H h0/x0 uN uav u01 u12 u02 	 % x2 Run

1.00 1.00 0.28 0.26 0.26 0.27 0.26 1.6 15.7 167
1.00 1.00 0.28 0.24 0.23 0.24 0.24 1.4 14.5 170
1.28 1.10 0.30 0.24 0.23 0.24 0.24 2.8 5.6 111
1.32 0.59 0.30 0.25 0.25 0.25 0.25 1.7 4.4 103
1.32 1.05 0.30 0.21 0.20 0.21 0.21 2.5 4.9 110
1.39 1.00 0.31 0.21 0.21 0.21 0.21 0.3 4.4 105
1.47 0.56 0.31 0.38 0.39 0.37 0.38 2.9 8.3 96
2.27 0.33 0.35 0.27 0.28 0.27 0.27 2.6 2.6 116
2.27 0.33 0.35 0.29 0.30 0.29 0.29 1.7 2.5 117

1.28 1.10 0.30 0.21 0.18 0.23 0.21 13.3 4.7 113
1.32 1.05 0.30 0.19 0.17 0.20 0.19 9.7 5.5 107
1.32 1.05 0.30 0.17 0.15 0.19 0.18 12.1 4.2 108
1.39 1.00 0.31 0.20 0.21 0.18 0.19 8.6 4.2 106
1.32 1.05 0.30 0.20 0.18 0.21 0.20 8.4 5.1 112
1.39 0.58 0.31 0.26 0.24 0.28 0.27 10.4 5.2 101
1.47 0.56 0.31 0.35 0.38 0.33 0.34 8.7 7.1 97
1.47 0.56 0.31 0.36 0.39 0.34 0.35 8.7 6.5 98
1.79 0.29 0.33 0.45 0.49 0.42 0.44 9.6 5.1 86

2.50 0.31 0.36 0.25 0.29 0.22 0.24 15.6 2.2 114
2.50 0.31 0.36 0.29 0.34 0.24 0.29 17.6 2.1 115

1.28 0.59 0.30 0.17 0.23 0.13 0.15 34.6 3.8 104
1.56 0.32 0.32 0.32 0.41 0.22 0.33 30.6 5.5 78
1.67 0.29 0.32 0.45 0.34 0.55 0.45 23.3 2.5 82
1.79 0.28 0.33 0.42 0.30 0.51 0.45 29.3 2.6 75
1.72 0.27 0.33 0.25 0.33 0.20 0.21 33.8 6.3 69

Table 1. Velocity of propagation: the initial uN predicted by the SW model, compared with
values calculated from the measurements given in Table 1 of Amen & Maxworthy (1980).
	 is the maximum deviation from the average velocity, x2 is the measured position where
strong deceleration begins. The data of Runs 167 and 170 have been corrected for an apparent
misprint in the original table (a shift of the decimal point).

accuracy of typically three significant decimal digits. We did not use the Boussinesq
approximation, but in the cases of interest the typical ε =2 × 10−2, and hence
variations of this parameter by ± 20 % yielded insignificant changes in the numerical
computations (the main influence of this variable is of course in the scaling quantities).

The numerical results reported in the paper were re-scaled according to the SW
formulation, (2.11)–(2.12) and (3.4).

Appendix C. Comparisons with Amen and Maxworthy (1980)
Table 1 of that paper summarizes 25 runs with 2Hh0 = 28 cm (the height of the

ambient in the tank), in the range 1 � H � 2.5, 0.57 � N � 1.78 s−1, and various
0.29 � h0/x0 � 1.05. The assumptions of Boussinesq and inviscid fluid were satisfied
well (at least during the time intervals considered here). The typical distance and time
of propagation are 50 cm and 20 s, respectively. If we assume plausible errors of
± 1 cm and ± 1 s (due to parallax, gate opening, diffusion) we obtain an estimate
of the typical velocity measurement error as ± 7 %. Since the experiments were not
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repeated and the original records are not available it is very difficult to obtain a more
accurate bound.

The table provides two recorded points (xi, ti), i = 1, 2 and the initial condition is
x0 = 1, t0 = 0. We used this information to calculate, by finite differences, the velocities
ujk based on points j and k, and the average uav .

Runs 167 and 170 were outside the reasonable range, and, following Faust & Plate
(1984), we corrected the times given by multiplication by 10.

We present the processed data in table 1. We arranged the results in four groups,
separated by horizontal lines, according to the magnitude of deviation from the
average velocity. In the first group there are nine runs. Here the deviations from the
constant-velocity propagation are typically 2 %. In the second group there are also
nine runs, and the deviations are typically 10 %. The fluctuations of the velocity are
not systematic: in some cases u01 >u12, in other cases the opposite was obtained.
Since the experimental error for this variable is estimated as 7 %, we claim that the
first nine runs certainly reflect motion with constant velocity, while the next nine runs
are fairly consistent with such a motion.

The position x2 in all these experimental runs is also consistent with the expected
slumping distance of a bottom gravity current and with the length of constant velocity
observed in the experiments of Maxworthy et al. (2002). Therefore, in our opinion,
these results support the theoretical prediction that a significant slumping phase with
constant velocity appears.

The third group contains two experiments, both with H = 2.5 and h0/x0 = 0.31.
Here the deviations from the constant-velocity pattern are about 17 %. However,
there is also a difference of about 16 % between the average velocity of the two
experiments for which we have no explanation. We therefore think that these results
are inconclusive, and can be discarded from the analysis of the initial velocity pattern.

The forth group contains five experiments with 1.3 � H � 1.7 and 0.3 � h0/x0 � 0.6,
and the deviations from the constant-velocity pattern are about 30 %. In experiments
78 and 104 we notice a strong drop in velocity from u01 to u12 (of more than 40 %).
On the other hand, in runs 75 and 82 we see the opposite behaviour (an increase
of more than 60 %). This is a bizarre inconsistency. In runs 75 and 82 large values
of u12, with no counterpart in other experiments, were obtained. Moreover, in run
69, performed with similar initial condition as runs 82 and 75, this velocity is by
more than 60 % smaller. The inconsistencies in this group suggest the possibility
that in these experiments the initial wave perturbation created by the opening of the
gate influenced the results. In any case, the scatter in these experiments makes them
inconclusive regarding the time-dependence of the velocity. We think that, again,
these points can be discarded from the analysis of the initial velocity pattern.

We emphasize that our reservations about the data in the last groups is based on
apparent internal inconsistencies, not on the deviation from the theoretical predictions.
We do not suggest ignoring the fact that the theory disagrees with these experimental
results. We only claim that, for the time being, there are reasons to discount the
importance of these discrepancies. A clear-cut decision on this issue must be left to
future experimental work.

In addition to the first nine experiments of table 1, clear-cut support for the constant
slumping-velocity pattern in this configuration is provided by the results of de Rooij
(1999) and of Maxworthy et al. (2002) (for a gravity current over a rigid boundary,
in conditions quite similar to the upper half of an intrusion). A summary of these
supportive results is presented in figure 15. We recall that the maximum uN attained
for release from a cylindrical lock is expected to be equal to the constant uN for
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Figure 15. Slumping uN as a functions of H in rectangular lock release,
SW prediction and experimental results.

the rectangular-lock counterpart. Therefore, also shown in figure 15 is the maximum
velocity derived from Wu’s results. (We note that even here some uncertainties appear,
see (4.5): at t = 2.5 the two curves give different results, 0.38 and 0.34; we used the
average.) It is evident that the experiments cover only a very small domain of H ,
but overall various systems (i.e. stratifications, aspect ratios, tanks) are represented. It
is encouraging that the experimental points are scattered about the theoretical line.
This indicates that the model contains no major systematic error.

Values of x2 from Amen & Maxworthy’s experiments were compared in figure 10
with our estimate of the position where the first wave–nose interaction occurs. This
is not a clear-cut effect and the comparison is mainly for a qualitative impression.
We therefore applied a less stringent consistency test to the experimental data used
for this figure, namely, a deviation of less than 100 % from the theoretical formula.
This allowed the inclusion of 20 experimental points.
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